

 Navigation

 	
 index

 	
 next |

 	Django CBTools 1.2.0 documentation

Welcome to Django CBTools documentation!

Contents:

	Installation
	Pre-requisite

	Requirements

	Quick Install

	Testing

	Getting Started with Django CBTools
	Creating Model

	Couchbase Views

	Sync-Gateway

	Testing

	Django-Cbtools Settings
	COUCHBASE_BUCKET

	COUCHBASE_HOSTS

	COUCHBASE_PASSWORD

	COUCHBASE_STALE

	SYNC_GATEWAY_BUCKET

	SYNC_GATEWAY_URL

	SYNC_GATEWAY_ADMIN_URL

	SYNC_GATEWAY_USER

	SYNC_GATEWAY_PASSWORD

	SYNC_GATEWAY_GUEST_USER

	SYNC_GATEWAY_GUEST_PASSWORD

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Viacheslav Iutin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django CBTools 1.2.0 documentation

Installation

Pre-requisite

	working Couchbase server / cluster

	working Sync-Gateway server

Requirements

	couchbase==2.0.8

	django-extensions==1.6.1

	django-tastypie==0.12.2

	requests==2.9.1

	shortuuid==0.4.3

couchbase package installation can be tricky. A recipe for Ubuntu 12:

sudo wget -O/etc/apt/sources.list.d/couchbase.list http://packages.couchbase.com/ubuntu/couchbase-ubuntu1204.list

wget -O- http://packages.couchbase.com/ubuntu/couchbase.key | sudo apt-key add -

sudo apt-get update

sudo apt-get install libcouchbase-dev libcouchbase2-libevent

Quick Install

Install package:

pip install django-cbtools

The following configuration settings are used for the package (you can use the set below for the fast installation):

COUCHBASE_BUCKET = 'default'
COUCHBASE_HOSTS = ['127.0.0.1']
COUCHBASE_PASSWORD = None
SYNC_GATEWAY_BUCKET = 'default'
SYNC_GATEWAY_URL = 'http://127.0.0.1:4984'
SYNC_GATEWAY_ADMIN_URL = 'http://127.0.0.1:4985'
SYNC_GATEWAY_USER = "demo_admin"
SYNC_GATEWAY_PASSWORD = "demo_admin_password"
SYNC_GATEWAY_GUEST_USER = "demo_guest"
SYNC_GATEWAY_GUEST_PASSWORD = "demo_guest_password"

Add django_cbtools to INSTALLED_APPS:

INSTALLED_APPS = (
 # ...
 'django_cbtools',
)

Create folder couchbase_views in the project root.

Testing

You should create a testing couchbase bucket to run the package tests
(and further your apps tests). For example default_test.

The testing bucket must contain test in the name. Otherwise some
helper functions will raise exception.

Certianly SyncGateway configuration must also have to be configurated properly
to take in account additional bucket, for example:

{
 "adminInterface":"0.0.0.0:4985",
 "databases": {
 "default": {
 "server": "http://127.0.0.1:8091",
 "bucket": "default"
 },
 "default_test": {
 "server": "http://127.0.0.1:8091",
 "bucket": "default_test"
 }
 }
}

Also you need an alternative settings.py to run tests. Probably you already have
similar file to run your own tests. If you don’t it’s time to create it now.
The following settings should be changed in order to run Couchbase-related tests properly:

	COUCHBASE_BUCKET is targetted to test bucket

	SYNC_GATEWAY_BUCKET is targetted to test bucket

	COUCHBASE_STALE is set to disable Couchbase caching

Like that, in file settings_test.py:

...
COUCHBASE_BUCKET = 'default_test'
COUCHBASE_STALE = False
SYNC_GATEWAY_BUCKET = 'default_test'
...

Now run tests as usual for django:

python manage.py test --settings=<your-project>.settings_test django_cbtools

 Copyright 2016, Viacheslav Iutin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django CBTools 1.2.0 documentation

Getting Started with Django CBTools

Django Couchbase is a wrapper around couchbase [https://pypi.python.org/pypi/couchbase]
python library plus several hook to
Sync-Gateway [http://developer.couchbase.com/mobile/develop/references/sync-gateway/rest-api/index.html] API.

The document search is perfomred using couchbase library (directly) connection
to couchbase server [http://www.couchbase.com/],
but saving and retrieving of the document is done using
Sync-Gateway HTTP API [http://developer.couchbase.com/mobile/develop/references/sync-gateway/rest-api/index.html]. This is done in order to have documents available for mobile
clients, which can get all benefits of couchbase library only through Sync-Gateway.

The essential part of the package is models. They are inherited from django models
with almost all the benefits they have: can be validated with django forms and have fields
all sort of field you are used to have.

Creating Model

Typical couchbase model class looks like that:

from django_cbtools.models import CouchbaseModel
from django.db import models

class CBArticle(CouchbaseModel):
 class Meta:
 abstract = True

 doc_type = 'article'
 uid_prefix = 'atl'

 title = models.CharField(max_length=45, null=True, blank=True)
 year_published = models.IntegerField(default=2014)
 is_draft = models.BooleanField(default=True)

 author_uid = models.TextField()

Certainly you can use all the rest types of fields. Let’s review the code above.

	The class has a prefix CB. It is optional. But you will probably have models
related to your relational database. So to distinguish them we find it’s useful
to have this small prefix.

	abstract = True this is to avoid django migration tool to take care about
changes in the couchbase models.

	doc_type = 'article' is the field you have to define. This is the way
Django CBtools stores the type of the objects. This value is stored in the
database.

	uid_prefix = 'atl' this is an optional prefix for the uid of the document.
Having prefix for the uid help a lot to debug the application. For example you
can easily define type of the document having just its uid. Very useful.

Getting Documents

The document creation is a stright forward process:

article = CBArticle()
article.title = 'You & Couchbase'

Or alternatively:

article = CBArticle(title='You & Couchbase')

Saving Documents / Channels

Ideally it should be as simple as that:

article = CBArticle(title='Couchbase & You')
article.save()

But if you do that you get exception:

CouchbaseModelError: Empty channels list can not be saved

Channels. This is how Sync-Gateway limit access to the documents
for different mobile clients. The server side
framework uses an admin user to create and save documents, so it has
access to all of them, but we mind mobile clients also. So:

article = CBArticle(title='Couchbase & You', channels=['channel_name'])
article.save()

or:

article = CBArticle(title='Couchbase & You')
article.append_channel('channel_name')
article.save()

channel_name is given here as an example. In real world it will
probably somehow related to your users. For example, somewhere in a view:

article = CBArticle(title='Couchbase & You')
article.append_channel(self.request.user.username)
article.save()

You can / should read some more about the concept of channels for
Sync-Gateway here [http://developer.couchbase.com/mobile/develop/guides/sync-gateway/channels/index.html].

Load Documents

You usually load document if you have its UID:

article = CBArticle('atl_0a1cf319ae4e8b3d5f8249fef9d1bb2c')
print article

Load Related Documents

This is how the model supports relations. Just a small helper method to load
related object. In our example above it’s an author document:

from django_cbtools.model import load_related_objects

article = CBArticle('atl_0a1cf319ae4e8b3d5f8249fef9d1bb2c')
load_related_objects([article], 'author', CBAuthor)
print article.author

The function above just create another instance variable author with loaded
CBAuthor document. By default it will check for UID in a filed with name
author_uid.

Please note, the function will make only one request to couchbase to load all
the related documents for the given documents.

Removing Documents

The package implements soft deletion of the documents. It means
it just set st_deleted field of the document to True.

A periodic process has to be setup in order to really delete the documents
when you really don’t need them.

There are two important points about st_deleted field:

	st_deleted field is defined in every document you create within the package.
You don’t have to define it explicitely.

	You should take in account this fields when you create your views.
Probably you don’t want to index the deleted documents.

So to set st_deleted to True you use delete() method:

article.delete()

Document signals

The package includes a “signal dispatcher” this means you can get notified when actions such as a document
is saved, updated or deleted.

The django_cbtools.signals module defines a set of signals sent by the couchbase model system.

cb_pre_save

This is sent at the beginning of a couchbase model’s save() method.

Arguments sent with this signal:

sender:
The model class.

instance:
The actual instance being saved.

cb_post_save

Like pre_save, but sent at the end of the save() method this signal also notifys if a document was saved.

Arguments sent with this signal:

sender:
The model class.

instance:
The actual instance being saved.

created:
A boolean; True if a new document was created else False if existing document is saved.

cb_pre_delete

Sent at the beginning of a document model’s delete().

Arguments sent with this signal:

sender:
The model class.

instance:
The actual instance being deleted.

cb_post_delete

Like pre_delete, but sent at the end of a model’s delete() method

Arguments sent with this signal:

sender:
The model class.

instance:
The actual instance being deleted.

Listening to signals

Here’s how you listen to a signal ::

from django_cbtools.signals import cb_pre_save, cb_post_save, cb_pre_delete, cb_post_delete

Listen to cb_pre_save signal
cb_pre_save.connect(pre_save_handler, CBArticle)

Listen to cb_post_save signal
cb_post_save.connect(post_save_handler, CBArticle)

Listen to cb_pre_delete signal
cb_pre_delete.connect(pre_delete_handler, CBArticle)

Listen to cb_post_delete signal
cb_post_delete.connect(post_delete_handler, CBArticle)

Couchbase Views

Views in coachbase are JavaScript functions. You can read some more about it
in couchbase documentation [http://docs.couchbase.com/admin/admin/Views/views-intro.html]
as it’s out of the scope of this document.

This package goes with two views in: by_channel (the view which allows you
to find documents by channel name and document type) and by_type which
can be used to get documents of particular type.

You can see the files of the views in folder couchbase_views/ of the project.
Those files are optional and if you don’t need them, just don’t copy them to your
project.

Creating Views

Firstly, create folder couchbase_views/ in your project. Then create
a js-file with your view, for example to find all articles of by the author
couchbase_views/by_author.js:

function (doc, meta) {
 if (doc.st_deleted) {
 // the document is deleted, nothing to index
 return;
 }
 if (doc.doc_type != 'article') {
 // it's not an article document, not for this index
 }
 emit(doc.author_uid, null)
}

You also may want to create reduce function for your view. Then create yet another
file with name by_author_reduce.js:

_count

Now your view has both map and reduce parts. The last one is optional.

Deploying Views

Your couchbase can not be used until they are not in couchbase server. To deploy them
from command line you use command deploy_cb_views:

python manage.py create_cb_views

Views Helper Functions

get_stale

	
get_stale()

	

Short hand for

settings.COUCHBASE_STALE if hasattr(settings, 'COUCHBASE_STALE') else STALE_OK

It means it just getter for your COUCHBASE_STALE option. Please
read more about it [http://docs.couchbase.com/admin/admin/Views/views-operation.html] in the couchbase docs.

query_view

	
query_view(view_name, query_key, query=None)

	

Search for query_key in a view view_name. Return list of
document uid s. Example:

import django_cbtools.models import query_view

uids = query_views('by_author', 'aut_5f8249fef9d1bb2c0a1cf319ae4e8b3d')
uids now is list of articles

Internally it builds a quiry for the view, but you can build a generic view
and pass it to perform more complicated view query:

from couchbase.views.params import Query
import django_cbtools.models import query_view

get all articles of these two authors
query = Query(
 keys=['aut_8b3d5f8249fef9d1b', 'aut_f8249fef9d1b8b3d5'],
 stale=get_stale()
)
uids = query_views(
 'by_author',
 query_key=None, # will be ignored anyway
 query=query
)

query_objects

	
query_objects(view_name, query_key, class_name, query=None)

	

Very similar to query_view, but it returns list of object of
given class_name instead just keys:

import django_cbtools.models import query_objects
objects = query_objects('by_author', 'aut_f8249fef9d1b8b3d5', CBAuthor)

Sync-Gateway

Sync-Gateway Users

Django-cbtools package needs at least one Sync-Gateway user.
The one which has full access to database:

SYNC_GATEWAY_USER = "django_cbtools_admin"
SYNC_GATEWAY_PASSWORD = "django_cbtools_admin_password"

The library will access the database using the credentials from
the settings above.

If you are also working on mobile app creation you may want to have
a guest user, the one which has access to a public documents
(the documents in public channel).
The guest user can be set like that:

SYNC_GATEWAY_GUEST_USER = "django_cbtools_guest"
SYNC_GATEWAY_GUEST_PASSWORD = "django_cbtools_guest_password"

Sync-Gateway has a concept of a GUEST user, but we don’t use it by many reasons.
So your mobile client will create pull / push processes using
the credentials above to access public documents. The library by itself
does not use these credentials. But it has a management command to create this
users in Sync-Gateway:

python manage.py create_sg_users

The command above will create admin and guest user in Sync-Gateway.

If you want to create a public document on server side you can do that:

from django_cbtools.models import CHANNEL_PUBLIC

article = CBArticle()
article.append_channel(CHANNEL_PUBLIC)
article.save()

SyncGateway Class

At the moment Sync-Gateway does not have any “native” library
to access it, but it provides awesome REST HTTP interface. SyncGateway
class is just a simple wrapper to access this HTTP interface. Internally
it uses requests [http://docs.python-requests.org/en/latest/] package.

put_user

	
SyncGateway.put_user(username, email, password, admin_channels, disabled=False)

	

A statis method to add a user to Sync-Gateway.

Usage:

from django_cbtools.sync_gateway import SyncGateway

SyncGateway.put_user('username', 'some@email.com', 'pass', ['user_channel'])

get_user

	
SyncGateway.get_user(username)

	

A static method to get information about Sync-Gateway user.

Usage:

from django_cbtools.sync_gateway import SyncGateway

print SyncGateway.get_user('username')

change_username

	
SyncGateway.change_username(old_username, new_username, password)

	

A static method to change the username of the user.

delete_user

	
SyncGateway.delete_user(username)

	

A static method to delete the username of the user.

create_session

	
SyncGateway.create_session(username, ttl)

	

A static method to create session for specified username.
Returns response object where you can find content with session cookie and session id.

Testing

There are several helper functions which you could find useful
in your unit / intergration tests.

When you write you tests you don’t have to deploy the view to test database
every time. Instead you deploy them in setUp function of your test classes.

Your tests coulc look like that:

from django.test import TestCase

from django_cbtools.sync_gateway import SyncGateway
from django_cbtools.tests import clean_buckets

from dashboard.management.commands.create_cb_views import Command

class ArticleTest(TestCase):
 def setUp(self):
 super(ArticleTest, self).setUp()
 SyncGateway.put_admin_user()
 clean_buckets()
 command = Command()
 command.handle()

 Copyright 2016, Viacheslav Iutin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Django CBTools 1.2.0 documentation

Django-Cbtools Settings

Full list of setting Django-Cbtools recognizes.

Warning

Please don’t use username and password from the lines below!

COUCHBASE_BUCKET

An example:

COUCHBASE_BUCKET = 'default'

COUCHBASE_HOSTS

Couchbase server hosts.

An example:

COUCHBASE_HOSTS = ['127.0.0.1']

COUCHBASE_PASSWORD

Couchbase password.

An example:

COUCHBASE_PASSWORD = None

OR:

COUCHBASE_PASSWORD = 'password'

COUCHBASE_STALE

Caching option for views. It’s used as a query parameter.
Read about values in couchbase documentation [http://docs.couchbase.com/admin/admin/Views/views-operation.html].

An example:

COUCHBASE_STALE = False

OR:

from couchbase.views.params import STALE_OK
COUCHBASE_STALE = STALE_OK

SYNC_GATEWAY_BUCKET

Basicly it’s probably the same as COUCHBASE_BUCKET.
But Sync-Gateway can have different settings.

An example:

SYNC_GATEWAY_BUCKET = 'default'

SYNC_GATEWAY_URL

An URL for Sync-Gateway server.

An example:

SYNC_GATEWAY_URL = 'http://127.0.0.1:4984'

SYNC_GATEWAY_ADMIN_URL

It’s probably the same as SYNC_GATEWAY_URL but with different port number.

An example:

SYNC_GATEWAY_ADMIN_URL = 'http://127.0.0.1:4985'

SYNC_GATEWAY_USER

The user which will be used to access the couchbase by your application.

An example:

SYNC_GATEWAY_USER = "admin"

SYNC_GATEWAY_PASSWORD

Password for the user above.

An example:

SYNC_GATEWAY_PASSWORD = "admin_password"

SYNC_GATEWAY_GUEST_USER

Guest user.

An example:

SYNC_GATEWAY_GUEST_USER = "guest"

SYNC_GATEWAY_GUEST_PASSWORD

Password for the user above.

An example:

SYNC_GATEWAY_GUEST_PASSWORD = "guest_password"

 Copyright 2016, Viacheslav Iutin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Django CBTools 1.2.0 documentation

Index

 C
 | D
 | G
 | P
 | Q

C

 	

 	change_username() (SyncGateway method)

 	

 	create_session() (SyncGateway method)

D

 	

 	delete_user() (SyncGateway method)

G

 	

 	get_stale()

 	

 	get_user() (SyncGateway method)

P

 	

 	put_user() (SyncGateway method)

Q

 	

 	query_objects()

 	

 	query_view()

 Copyright 2016, Viacheslav Iutin.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Django CBTools 1.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Viacheslav Iutin.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

